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SUMMARY

Dendrites from the same neuron usually develop
nonoverlapping patterns by self-avoidance, a pro-
cess requiring contact-dependent recognition and
repulsion. Recent studies have implicated homo-
philic interactions of cell surfacemolecules, including
Dscams and Pcdhgs, in self-recognition, but repul-
sive molecular mechanisms remain obscure. Here,
we report a role for the secreted molecule Slit2 and
its receptor Robo2 in self-avoidance of cerebellar
Purkinje cells (PCs). Both molecules are highly ex-
pressed by PCs, and their deletion leads to excessive
dendrite self-crossing without affecting arbor size
and shape. This cell-autonomous function is sup-
ported by the boundary-establishing activity of Slit
in culture and the phenotype rescue by membrane-
associated Slit2 activities. Furthermore, genetic
studies show that they act independently from
Pcdhg-mediated recognition. Finally, PC-specific
deletion of Robo2 is associated with motor behavior
alterations. Thus, our study uncovers a local repul-
sive mechanism required for self-avoidance and
demonstrates the molecular complexity at the cell
surface in dendritic patterning.

INTRODUCTION

Dendrites are the sites of synaptic inputs and often grow in

nonoverlapping patterns that maximize receptive field coverage

while minimizing redundant inputs (Jan and Jan, 2010). Develop-

ment of such a pattern in single neurons is achieved by self-

avoidance, an active process involving contact-dependent

recognition and repulsion between neighboring sister branches

(Grueber and Sagasti, 2010).

Initially discovered in leech mechanosensory neurons (Kramer

and Kuwada, 1983), self-avoidance has been found for both

axons and dendrites in a wide range of invertebrate and verte-
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brate neurons (Fujishima et al., 2012; Hughes et al., 2007; Liu

and Halloran, 2005; Matthews et al., 2007; Montague and Fried-

lander, 1991; Sagasti et al., 2005; Sdrulla and Linden, 2006;

Soba et al., 2007). Recent invertebrate studies have identified

a number of cell-surface molecules that are required cell-auton-

omously for establishing nonoverlapping dendrites or axons in

an approximately two-dimensional (2D) plane. They include the

Down syndrome cell adhesion molecule (Dscam) (Hughes

et al., 2007; Matthews et al., 2007; Soba et al., 2007), the

secreted guidance molecule Netrin and its receptors (Smith

et al., 2012), the cadherin member Flamingo (Fmi) (Matsubara

et al., 2011), the leukocyte antigen-related (LAR) protein receptor

tyrosine phosphatase (Baker andMacagno, 2000), the cell adhe-

sion molecule integrin (Han et al., 2012; Kim et al., 2012), and the

tripartite ligand-receptor complex involving SAX-7, MNR-1, and

DMA-1 (Dong et al., 2013; Salzberg et al., 2013). In mammals,

however, only a few molecules, including Dscam and the related

DscamL1 (Fuerst et al., 2009), the transmembrane semaphorin

6A (Sema6A) (Matsuoka et al., 2012), and the gamma cluster of

protocadherins (Pcdhgs) (Lefebvre et al., 2012), have been

studied for their self-avoidance function in subpopulations of

retinal cells and cerebellar Purkinje cells (PCs).

Recent investigation of several cell surface molecules has

drawn attention to the mechanisms involved in recognition.

Studies of Drosophila Dscams (Wojtowicz et al., 2004, 2007)

and mammalian Pcdhgs (Chen et al., 2012; Lefebvre et al.,

2012; Yagi, 2008) pointed to a novel mechanism involving

diverse isoforms generated by alternative splicing or promoter

usage for these molecules. Homophilic interaction of specific

isoforms at the branch surface confers unique molecular identi-

ties on each neuron and thus promotes the distinction between

‘‘self’’ and ‘‘nonself’’ (Zipursky and Sanes, 2010). Interestingly,

in Caenorhabditis elegans, the secreted molecule Netrin/

UNC-6 was also proposed to mediate recognition, but via a

capture-and-display mechanism involving two distinct receptors

expressed on neighboring dendrites (Smith et al., 2012). In both

cases, themolecular interaction fits well with the contact-depen-

dent nature of self-avoidance as revealed by live imaging

(Fujishima et al., 2012; Liu and Halloran, 2005; Montague and

Friedlander, 1991; Sagasti et al., 2005; Sdrulla and Linden,

2006; Smith et al., 2012).
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Despite the current progress in recognition, mechanisms

involved in other aspects of self-avoidance, such as repulsion,

remain poorly understood (Grueber and Sagasti, 2010). Although

two axon guidance cues, Netrin and Sema6A, were recently

implicated (Matsuoka et al., 2012; Smith et al., 2012), it is not

clear whether repulsive molecules in general can promote self-

avoidance. In addition, it is not clear whether mechanisms

involved in repulsion cooperate with recognition or function inde-

pendently. Furthermore, nearly all the molecular mechanisms

identified so far involve interactions between transmembrane

proteins (Grueber and Sagasti, 2010), and the role of secreted

factors in mediating self-avoidance is not clear.

In this study, we analyze the function of the secreted repulsive

guidance cues Slits and their cognate Robo receptors during

cerebellar PCdevelopment. Slits are a family of secreted proteins

(Slit1-3 in mammals) that often act as repulsive cues to regulate

axon guidance, cell migration, and other developmental pro-

cesses (Borrell et al., 2012; Domyan et al., 2013; Giovannone

et al., 2012; Grieshammer et al., 2004; Long et al., 2004; Ma and

Tessier-Lavigne, 2007; Wang et al., 2013; Wu et al., 2001). Slit

functions are primarily mediated by two transmembrane proteins

Robo1 and Robo2 (Bashaw and Klein, 2010; Chédotal, 2007).

Here, we show that both Slit2 and Robo2 are highly expressed

by PCs during dendritic arbor development and are required

cell-autonomously for self-avoidance. Further analysis indicates

that Slit proteins can repel PC dendrites in vitro and need to be

localized to the dendritic surface in vivo. Furthermore,wedemon-

strategenetically that Slit/RoboandPcdhgsact in separateextra-

cellular pathways and provide first evidence to link defective

self-avoidance and changes in animal behavior. Thus, our study

identifies another molecular system required for self-avoidance

in a mammalian neuron and suggests that complex arbors may

require multiple mechanisms to achieve mature morphology.

RESULTS

Robo2 Is Expressed in PC Dendrites during Dendritic
Growth
In rodents, PC dendritic arbors undergo rapid expansion during

the second and third postnatal week when extensive new

branches are added (McKay and Turner, 2005). Previous studies

have shown PC-specific expression of Robo2, but not Robo1, in

adult mice (Lein et al., 2007) and in embryonic through adult rat

cerebellum (Marillat et al., 2002). We confirmed this pattern by

performing RNA in situ hybridization during PC dendritogenesis

at postnatal day (P) 14. At this age, Robo2 mRNA is strongly ex-

pressed in PC somas in the PC layer (PCL) (Figure 1B), which is

apparent in a high-magnification view (Figure 1C). Robo2mRNA

is only present at background levels in the granule cell layer

(GCL) and is notably absent from molecular layer (ML) neurons

(Figure 1C). As a comparison, Robo1 transcripts were not de-

tected in PCs (Figure 1A), suggesting that Robo2 is the main re-

ceptor expressed during PC dendritogenesis.

We also examined Robo2 protein localization in P21 cerebella

by immunostaining using a Robo2-specific antibody (Figures

1D–1F). The immunostaining signal was found in both dendrites

and somas of wild-type PCs (Figure 1E) and colocalized with the

PC-marker, Calbindin (Figures 1D and 1F). To demonstrate the
specificity of the antibody, we examined the staining in the cer-

ebellum carrying a PC-specific Cre driver (Pcp2-Cre or L7-Cre)

and conditional Robo2 alleles (Robo2flox/flox) (Figures 1G–1I)

(Barski et al., 2000; Lu et al., 2007). Deletion of the loxP-flanked

exon 5 in Robo2 results in unstable Robo2 proteins (Lu et al.,

2007) and hence the loss of immunostaining signal in PCs (Fig-

ure 1H). Furthermore, Robo2 staining is absent from the wild-

type PC axons (data not shown), suggesting dendrite-specific

expression. Taken together, the expression of Robo2 during

PC dendritogenesis suggests its potential role in self-avoidance

or other processes that contribute to proper dendrite patterning.

Deletion of Robo2 Leads to Self-Crossing of PC
Dendrites
To investigate the function of Robo2 in dendritic development of

individual PCs, we adopted a mosaic analysis method by inject-

ing recombinant adeno-associated virus (rAAV) into the cere-

bellar midline of Robo2flox/flox mice on the day of birth (P0)

(Gibson and Ma, 2011). This approach allowed us to selectively

delete Robo2 in single PCs and visualize the entire dendritic

arbor. The Robo2flox allele was used because it had been used

to recapitulate the kidney and urinary tract defects (Lu et al.,

2007) and the sensory axon overshooting defect (Figures S1A

and S1B available online) found with a Robo2 null allele (Gries-

hammer et al., 2004; Ma and Tessier-Lavigne, 2007). We chose

to use rAAV8 because this serotype infects only PCs in the

cerebellum (Pilpel et al., 2009). A mixture of rAAV8 expressing

either DsRed (AAV-DsRed) or coexpressing Cre and GFP from

separate promoters (AAV-Cre-GFP) was used to produce a

sparse in vivo mosaic of control (DsRed+) or Robo2-deficient

(GFP+) PCs. At the concentrations used, PCs were rarely coin-

fected by both viruses, thereby exhibiting mutually exclusive

DsRed and GFP expression (Figure S1F). GFP and DsRed label-

ing perfectly overlaps when the two viruses are coexpressed

(data not shown) and GFP+ cells have consistent Cre activities

as demonstrated by the tdTomato reporter (Figures S1–S1E) or

the loss of Robo2 immunostaining (Figure S1G). Thus this exper-

imental design provides a reliable and unbiased means to

compare control and mutant PCs in the same cerebellum.

We analyzed PC dendrites at P21 when they have developed

nearly mature arbor morphology. Single-labeled PCs throughout

the cerebellum were imaged by confocal microscopy and then

traced and reconstructed in three-dimensions (3D) from thin

optical sections (<0.75 mm) using Neurolucida. DsRed+ control

PC arbors consisted of smooth primary dendrites and many

spiny secondary branches restricted to and arborizing within

the ML (Figures 2A–2C). They showed a strong tendency of

self-avoidance with few crosses of sister dendrites in the pro-

jected reconstructions (Figures 2B and 2C). In contrast, tracing

of GFP+ Robo2 mutant PCs revealed extensive overlapping of

sister branches (Figures 2D–2F). The overlaps were observed

throughout the tree, but only between the high-order spiny

branches and not between smooth primary dendrites (Figures

2A and 2D, arrowheads). For comparison, this crossing defect

was not seen in wild-type neurons infected by AAV-Cre-GFP

(Figures S1H and S1I).

To quantify the crosses observed in control andRobo2mutant

PCs, we developed an unbiased sampling method by analyzing
Neuron 81, 1040–1056, March 5, 2014 ª2014 Elsevier Inc. 1041
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Figure 1. Robo2 Is Expressed by Purkinje Cells

(A–C) In situ hybridization of Robo1(A) and Robo2 (B) in P14 cerebellum. ML, PCL, and GCL are shown in a high-magnification region of the cerebellum for Robo2

(C). Arrows indicate PC somas. Scale bars represent 100 mm.

(D–I) Sections of P21 cerebellum from animals carrying both aPcp2-Cre driver andRobo2+/+ (D and F) orRobo2flox/flox (G–I) alleles were stainedwith antibodies for

Calbindin (D and G) or Robo2 (E and H). In the merged image of the Pcp2-Cre ;Robo2+/+ section (F), the red Robo2 signal is similar to the green Calbindin staining

in the cell body and primary dendrites, giving yellowing appearance, whereas it is much stronger on the spiny dendrites, making the entire ML reddish. In the

Pcp2-Cre;Robo2flox/flox section, Robo2 immunostaining was undetectable (H), resulting in an ML labeled mostly with the green Calbindin staining label in the

merged image (I). Note, interneuron cell bodies were not labeled and appeared as black holes (arrows heads, D–F). Scale bar represents 20 mm (D–I).

See also Figure S1.
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randomly selected 100 mm2 regions (Figures S2A and S2B),

which altogether cover�20% of each arbor. Using this analysis,

we found that DsRed+ control PCs have only 0.8 ± 0.2 crosses

per 100 mm of dendrite length whereas GFP+ Robo2 mutant

PCs have a significantly higher frequency of self-crossing with

6.1 ± 0.5/100 mm (Figure 2J). We also confirmed this result by

analyzing the complete reconstruction of PC dendritic arbors,

which showed a nearly identical difference between control

andmutant PCs (Figures S2C and S2D), thus validating the sam-

pling method. Furthermore, in mice carrying the homozygous

Robo1�/� null alleles (Long et al., 2004) and the Robo2flox/flox

or Robo2-/flox alleles, simultaneously deleting Robo1 and
1042 Neuron 81, 1040–1056, March 5, 2014 ª2014 Elsevier Inc.
Robo2 by AAV-Cre-GFP led to excessive PC dendritic crosses

(4.1 ± 0.5/100 mm; n = 7; Figures S2E–S2H) with a frequency

similar to that in single Robo2 knockout PCs, whereas Robo1

only deletion as labeled by AAV-DsRed had the control-level

of crosses (0.9 ± 0.04/100 mm, n = 7). These results suggest

that Robo2 is the primary receptor required for PC arbor

patterning.

Deletion of Robo2 in PCs Only Affects Dendrite Self-
Avoidance
To rule out that the self-crossing phenotype is secondary to

other defects in dendritic development, we further characterized
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Figure 2. Robo2 Is Required for PC Dendrite Self-Avoidance

(A–F) Robo2flox/flox PCs infected with AAV-DsRed (A–C) or AAV-Cre-GFP (D–F) are shown by z projections of confocal images (A, B, D, and E) or skeletonized

reconstructions (C and F). High-magnification images shown in (B, C, E, and F) correspond to the respective boxed regions in (A and D). Arrowheads point to

smooth primary dendrites, while arrows indicate self-crosses. Scale bars represent 100 mm (A and D); 5 mm (B, C, E, and F).

(G–J) Quantification of the number (#) of branches (G), the total dendrite length (H), the total area of the dendritic arbor (I), and the frequency of self-crossing

expressed as the number (#) of crosses per 100 mm of dendrite length (J) of labeled PCs (G–I, n = 5 cells, three mice; J, n = 12 cells, five mice, ****p < 0.0001,

Student’s t test). Data are shown by mean ± SEM.

See also Figure S2.
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the dendritic morphology in Robo2-deleted PCs. Using mea-

surements from 3D reconstructions, we found no significant

changes in other dendrite properties, such as total dendrite

length, number of branches, or total dendritic area (Figures

2G–2I). Nor was there any correlation of the defect with any

particular arbor shape (data not shown), indicating that the

defect applies to all PCs. Furthermore, individual Robo2 mutant
PCs showed no changes in monoplanarity (data not shown) or

spine development (see below, Figure S5). When Robo2 was

deleted from all PCs using the Pcp2-Cre driver (Barski et al.,

2000), no other gross aspects of neural development were

altered (see below, Figure S5), except that the same crossing

defect was apparent in PCs sparsely labeled by AAV-DsRed

(Figure S5A). Thus, loss of Robo2 in PCs specifically perturbs
Neuron 81, 1040–1056, March 5, 2014 ª2014 Elsevier Inc. 1043
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Figure 3. Robo2 Is Required for an Active Local Avoidance Mechanism

(A–D) Z projections of confocal images (A and C) with the accompanying rotated views (B and D) of single self-crosses from AAV-DsRed-labeled control (A and B)

and AAV-Cre-GFP-infected mutant (C and D) Robo2flox/flox PCs. Yellow (A and B) and red (C and D) lines are reconstructed portions of crossing branches;

untraced branches are in the background in the rotated views (B and D) and are not part of the indicated self-crossing. Scale bars represent 2 mm.

(E) A cumulative frequency distribution plot illustrates the percentage of self-crosses that occur within a given distance along the z axis for control (red line) and

mutant (green line) PCs.

(legend continued on next page)
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the spacing of neighboring branches, a hallmark of impaired self-

avoidance.

We further investigated the phenotype by analyzing the dis-

tance between crossing branches along the z axis using 3D

reconstructions. We reasoned that an impairment of self-

avoidance would result in crossing branches that are in closer

proximity to each other than the few crosses observed in control

cells in which self-avoidance mechanisms are intact. Indeed, the

rare self-crosses in control cells were separated along the z axis

(Figures 3A and 3B) with a median separation of �4 mm (Fig-

ure 3E). In contrast, over 50% of the self-crosses found in the

GFP+ PCs (Figures 3C and 3D) were between branches passing

within 1 mm of each other. As a comparison, <6% of crosses in

control cells were within this distance (Figure 3E). The reduced

spacing between crossing branches along the z axis further sug-

gests that the defect is due to the loss of a short-range spacing

mechanism in mutant PCs, consistent with a role of Robo2 in

self-avoidance.

We also analyzed the crossing data collected from the sam-

pling method and plotted the relationship between the number

of self-crosses and dendritic density (total dendrite length/

100 mm2). In Robo2 mutant PC arbors, the number of self-

crosses rapidly increased along with dendritic density (Figures

3H–3J). In contrast, control PC arbors did not show this correla-

tion at all (Figures 3F, 3G, and 3J), suggesting that a normally

active self-avoidance mechanism is impaired in Robo2 mutant

cells.

To assess the time course of normal self-avoidance and the

effect of Robo2 deletion, we repeated our neonatal virus injec-

tion in P0 Robo2flox/flox pups and analyzed PCs at two additional

ages, P14 and P60. At both ages, we found that DsRed+ control

PCs exhibited a low frequency of self-crossing, whereas GFP+

mutant PCs displayed a high frequency (Figures 3K and 3L

versus Figure 2J). These results indicate that the defect pro-

duced by Robo2 deletion occurs early in development and is

not corrected over the time period analyzed.

Expression of Slit Genes in PCs
Given the role of Robo2 in self-avoidance, we askedwhether any

of the known Slit ligands are required by first investigating the

expression of Slit1-3 in P14 cerebella. By in situ hybridization,

Slit2 mRNA was found exclusively in PC cell bodies (Figures

4A and 4B). Slit1 and Slit3 mRNAs were primarily restricted to

the GCL (Figures S3A–S3C), as shown previously in the rat

cerebellum (Marillat et al., 2002). In addition, Slit1 is weakly ex-

pressed by a subset of PCs (Figure S3B).

We next probed P14 mouse cerebellar samples for the pres-

ence of Slit2 protein by western blot. Isolated cerebellar tissues

were processed as awhole cerebellum lysate or furthermicrodis-

sected to separate the GCL from ML and PCL to assess the
(F–I) Examples of reconstructed dendritic branches in AAV-DsRed infected contro

fixed area (100 mm2) with both short (F and H) and long (G and I) total dendrite le

(J) Plot of the relationship between the total dendrite length in a fixed area and the

dots) PCs. Solid lines are lines of best fit.

(K–L) The frequency of self-crossing is quantified as the number (#, mean ± SEM) o

at P14 (K, n = 5 cells, three mice) or P60 (L, n = 5 DsRed cells or 6 Cre-GFP cell

See also Figure S3.
laminar distribution of proteins. By probing these samples

with a specific antibody, we found Slit2 enriched inML+PCL rela-

tive toGCL (Figure 4C). This result suggests that, likeRobo2, Slit2

geneexpression is restricted toPCsand theprotein appears tobe

predominant in theML,most likely in PC dendrites. This finding is

intriguing, because it suggests that the ligand might also be

required cell-autonomously for PC dendrite development.

Deletion of Slits from PCs Also Leads to Dendrite
Self-Crossing
To test for the cell-autonomous role of Slit2 in self-avoidance, we

next examined the consequence of a PC-specific Slit2 deletion.

We injected neonatal pups homozygous for a Slit2flox allele with a

combination of AAV-DsRed and AAV-Cre-GFP as described

above (Figures 4D–4I). In these animals, DsRed+ control PCs dis-

played a low frequency of self-crossing at a level (1.0 ± 0.1/

100 mm) similar to control Robo2flox/flox PCs (Figure 4J versus

Figure 2J). The frequency of self-crossing in GFP+ Slit2 mutant

PCs, however, was significantly higher (5.4 ± 0.5/100 mm) and

increased by�5-fold relative to control cells and reached a level

equivalent to that of Robo2 mutant PCs (Figure 4J versus Fig-

ure 2J). This is consistent with the known interactions between

this ligand/receptor pair (Chédotal, 2007) and suggests that their

repulsive function might mediate PC self-avoidance. Addition-

ally, the phenotypic similarity and the PC-specific expression

of Slit2 and Robo2 suggest that the ligand acts in an autocrine

fashion.

We also examined PCs in mice homozygous for a Slit1 null

allele (Plump et al., 2002) because some PCs weakly express

Slit1 (Figures S3A and S3B). Based on AAV-DsRed labeling of

mutant and control littermates, we observed that PCs in Slit1

mutant animals exhibited an increase in self-crossing frequency

of �4-fold (4.5 ± 0.8/100 mm) relative to control PCs (1.0 ± 0.1/

100 mm) (Figure S3D). Thus, Slit1 is also required for PC dendrite

self-avoidance. Its expression in both PCL and GCL and the lack

of a conditional allele, however, preclude the determination of its

cell-autonomous or non-cell-autonomous action.

PC Dendrites Fail to Cross a Slit-Boundary in Explant
Cocultures
Slit2 expressed by PCs may associate with dendrites and serve

as repulsive barriers to sister branches (Fujishima et al., 2012;

Sdrulla and Linden, 2006). Thus, we asked whether Slit proteins

could repel PC dendrites. We developed an organotypic culture

using foliar explants isolated from P7 mouse cerebella and

culturing them next to COS cell aggregates (Figure 5A). Nor-

mally, after �10 days in vitro (DIV), some PC dendrites located

at the edge of isolated explants extended toward the periphery

and away from themajority of other PCs in the explant, as shown

by the staining of the PC marker, Calbindin.
l (F and G) and AAV-Cre-GFP infectedmutant (H and I)Robo2flox/flox PCs from a

ngths. Scale bar represents 2 mm.

number of self-crosses in control (red line and dots) and mutant (green line and

f crosses per 100 mm for AAV-DsRed- or AAV-Cre-GFP-infected PCs analyzed

s, three mice). *p < 0.05 and ***p < 0.001, Student’s t test.
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When mock-transfected control COS cell aggregates were

placed adjacent to the explant at this time point and then

cultured for an additional 3 DIV, PC dendrites freely crossed

the boundary identified from DIC images or by nuclear staining

and grew to some distance (Figure 5B). In contrast, when COS

cell aggregates expressing full-length Slit1 and Slit2 were placed

adjacent to the explant, PC dendrites in about half of the explants

failed to cross the explant-aggregate boundary, but instead

grew around the periphery of the aggregates (Figures 5C and

5F). In addition, when PC dendrites did cross the Slit-expressing

boundary, themeanmaximum invasion distance of the dendrites

was significantly lower than in control conditions (Figure 5G).

This repulsive effect is Robo2-dependent, as PC dendrites in ex-

plants collected from PC-specific Robo2 deletion animals

(Pcp2-Cre;Robo2flox/flox) showed similar crossing behaviors at

both control and Slit-expressing boundaries (Figures 5D–5G).

These results demonstrate that Slit-repulsion can prevent

dendrite crossing, perhaps mimicking the barrier function of sis-

ter dendrites for self-avoidance in vivo.

A Membrane-Localized Slit2 Activity Rescues the Self-
Avoidance Defect in Slit2 Mutant PCs
We next asked whether Slit2 activity needs to be localized to the

vicinity of PC dendrites, as Slit2 is a secreted molecule but cur-

rent models of self-avoidance are based on contact-dependent

interactions between branches (Grueber and Sagasti, 2010). We

designed a rescue experiment with a Slit2 fragment consisting of

the second leucine-rich repeat (LRR), termed D2. This fragment

was shown to bind to Robos and retain the Slit2 repulsive activity

(Hussain et al., 2006) and is small enough to fit in rAAV8.

We performed the rescue experiments in Pcp2-Cre;Slit2flox/flox

mice using AAV-DsRed (control) and rAAV coexpressing the D2

fragment and GFP (rescue). We expressed one of two forms of

D2: a diffusible form termed Slit2D2 and a membrane-bound

form termed Slit2D2GPI, which utilizes a glycosylphosphatidyli-

nositol (GPI) anchor (Figure 6A). As labeled by control AAV-

DsRed, Slit2-deficient PCs (Figures 6B–6D and 6K) exhibited a

high frequency of self-crossing (5.7 ± 0.4/100 mm) at a level

comparable to that of single Slit2 mutant PCs described above

(Figure 6K versus Figure 4J). Surprisingly, PCs infected with

AAV-Slit2D2-GFP (Figures 6E–6G and 6K) showed a similar

defect (5.4 ± 1.0/100 mm), suggesting that the diffusible form is

insufficient to rescue the defect. Interestingly, the frequency of

self-crossing was dramatically decreased (1.8 ± 0.3/100 mm) in

PCs infected with AAV-Slit2D2GPI-GFP that expressed the

membrane-bound D2 fragment (Figures 6H–6K). Because the
Figure 4. Slit2 Is Required Cell–Autonomously for PC Dendrite Self-Av
(A and B) In situ hybridization of Slit2 in P14 cerebellum. Arrows indicate PCs. ML

Scale bars represent 50 mm.

(C)Western blots of P14 cerebellar tissue samples probed by antibodies against S

increased levels of Slit2 proteins in the ML+PCL relative to the GCL as shown by th

top and bottom panels (Ce, whole cerebellum).

(D–I) Slit2flox/flox PCs infected with AAV-DsRed (D–F) or AAV-Cre-GFP (G–I) are s

constructions (F and I). Boxed regions inside the labeled arbors are enlarged and

bars represent 20 mm (D and G); 5 mm (E, F, H, and I).

(J) Quantification of the frequency of self-crossing as the number (#, mean ± SEM

n = 12 Cre-GFP cells, four mice). ****p < 0.0001, Student’s t test.

See also Figure S3.
GPI anchor tethers the D2 fragment to the plasma membrane

(Figure S4), the rescue by Slit2D2GPI suggests an important

role of localized Slit2 activity in preventing self-crossing of PC

dendrites (Figure 6L).

Slit/Robo and Pcdhgs Independently Mediate Self-
Avoidance at the PC Dendrite Surface
Recent work has demonstrated the role of Pcdhgs in mediating

PC dendrite self-avoidance (Lefebvre et al., 2012), providing us

an opportunity to test whether the two molecular pathways act

in a linear fashion or separately (Model 1 and 2 in Figure 7A).

Two experiments were carried out using a Pcdhgfcon3 allele

that has the common intracellular region deleted (Lefebvre

et al., 2008).

First, we performed a rescue experiment by injecting

Pcdhgfcon3/fcon3 neonatal pups with two AAVs, one coexpress-

ing Cre and a mCherry marker while another coexpressing

Slit2D2GPI and a GFP marker. We analyzed PCs coinfected

with both AAVs, which represented Slit2D2GPI rescue in the

Pcdhg mutant background (Figures 7D and 7E), and compared

them to Pcdhg mutant PCs in the littermates injected with

AAV-Cre-GFP only (Figures 7B and 7C). As predicted, Pcdhg

mutant PCs exhibit a self-avoidance defect comparable to that

previously reported (Lefebvre et al., 2012). Interestingly,

Slit2D2GPI overexpression failed to rescue this defect, as both

Slit2D2GPI rescue and single Pcdhg mutant PCs exhibit similar

crossing defects (Figure 7J; 4.8 ± 0.4/100 mm versus 5.6 ± 0.4,

respectively). As a comparison, the defects are comparable

to that of Robo2 mutant PCs (Figure 7J versus Figure 2J)

and �6-fold higher than the control cells described above (Fig-

ure 2J) or the Pcdhgfcon3/fcon3;Robo2flox/flox control cells infected

with AAV-DsRed (Figures 7F, 7G, and 7J; 0.9 ± 0.1/100 mm). This

result shows that localized Slit2 activity cannot bypass the

requirement of Pcdhg-mediated recognition in self-avoidance

and suggests that the two extracellular pathways act separately

at the extracellular surface.

This conclusion is further supported by the second study

of double Pcdhg and Robo2 deletion in PCs. In the

Pcdhgfcon3/fcon3;Robo2flox/flox background, AAV-DsRed infected

PCs exhibit normal dendrite morphology with a low frequency

of self-crossing, whereas AAV-Cre-GFP+ PCs (Figures 7H and

7I) exhibited a significantly increased frequency of self-crossing

(Figure 7J; 7.7 ± 0.8/100 mm)with reduced spacing between den-

dritic branches. Notably, the self-avoidance phenotype in these

double mutant PCs is stronger than that from either Pcdhg (Fig-

ure 7J) or Robo2 (Figure 2J) single mutants, further suggesting
oidance
, PCL, GCL are shown in (B) for a high-magnification region of the cerebellum.

lit2 (top panels). Numbers on the left indicate molecular weight in kDa. Note the

e relative density (R.D.) normalized to a-tubulin (bottom panel). Labels apply to

hown by z projections of confocal images (D, E, G, and H) or skeletonized re-

shown in (E), (F), (H), and (I) respectively. Arrows indicate self-crosses. Scale

) of crosses per 100 mm in the labeled PCs above ( n = 18 DsRed cells, six mice;
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Figure 5. Slits Are Sufficient to Repel PC Dendrites

(A) Schematic illustration of a cerebellar foliar explant isolated from a P7 cerebellum slice and coculturedwith a COS cell aggregate when PC dendrites grow away

from the explant (brown).

(B–E) Wild-type (B and C) and Pcp2-Cre;Robo2flox/flox (D and E) cerebellar explants grown next to control (B and D) or Slit-transfected (C and E) COS cell

aggregates were stained for Calbindin-D28k, a marker for PCs and their dendrites; cell nuclei were labeled with Hoechst dye. Dashed lines delineate the explant/

aggregate boundary. Scale bars represent 20 mm.

(F andG) Quantification of the percentage of cocultures inwhich dendrites extended beyond the boundary (F) betweenwild-type explants (left) and control (n = 21)

or Slit-expressing (n = 23) COS aggregates or between Pcp2-Cre;Robo2flox/flox explants (right) and control (n = 10) or Slit-expressing (n = 9) COS aggregates.

The maximum invasion distances for each condition are shown in (G). Values are expressed by mean ± SEM. ****p < 0.0001 and ***p < 0.001, Student’s t test.
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that the two molecules do not act in the same pathway as sug-

gested by Model 1 (Figure 7A). Taken together, these two results

strongly favorModel 2 (Figure 7A), in which Pcdhgs andSlit/Robo

act separately at the cell surface to mediate PC self-avoidance.

Disrupted Self-Avoidance Is Associated with Gait
Alterations in Mice with PC-Specific Robo2 Deletion
Cerebellar PCs are critical to normal motor performance, which

can be assayed in a variety of experimental paradigms (Becker
1048 Neuron 81, 1040–1056, March 5, 2014 ª2014 Elsevier Inc.
et al., 2009; Donald et al., 2008; Li et al., 2010; Sergaki et al.,

2010). Because Robo2 can be deleted selectively in all PCs using

Pcp2-Cre, we investigated the effects of disrupted dendrite self-

avoidance on the motor behavior of Pcp2-Cre;Robo2flox/flox

mice. These animals retained the self-avoidance phenotype as

revealed by single cell analysis (Figure S5A) and showed no

obvious locomotor defects under direct observation. We carried

out two quantitative assays at P21 for these animals and their

littermate controls (Pcp2-Cre;Robo2+/+): a footprint test to
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(A) Schematic illustration of the constructs expressed in the rescue experiment, including nonlocalized secreted Slit2D2 (middle panel) and membrane-bound

Slit2D2GPI (bottom panel).

(B–J) Confocal analysis of Pcp2-Cre;Slit2flox/flox PCs infected with either AAV-DsRed (B–D), AAV-GFP-Slit2D2 (E–G), or AAV-GFP-Slit2D2GPI (H–J). Confocal z

projections of the entire arbor are shown in (B), (E), and (H), respectively. High-magnification images shown by confocal images (C, F, and I) or skeletonized

reconstructions (D, G, and J) of the corresponding boxed region highlight the self-crosses (arrows) in different conditions. Scale bars represent 20 mm (B, E,

and H); 5 mm (C, D, F, G, I, and J).

(K) Quantification of the frequency of self-crossing (#/100 mm, mean ± SEM) from the above rescue experiments (n = 6 cells, three mice for all conditions). ****p <

0.0001 and n.s., not significant from ANOVA with a Bonferroni post hoc test.

(L) Schematic model illustrating the repulsion of sister branches mediated by membrane-localized Slit2 and its activation of Robo2.

See also Figure S4.
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(A) Two models of Slit/Robo and Pcdhg interactions in self-avoidance (S-A): linear signaling (Model 1) versus parallel signaling (Model 2).

(B–E) Confocal analysis of Pcdhgfcon3/fcon3 PCs infected with AAV-Cre-GFP (B and C) or coinfected with AAV-Cre-mCherry and AAV-Slit2D2GPI-GFP (D and E).

Confocal z projections of the entire arbor are shown in (B) and (D). Skeletonized reconstructions (C and E) of the corresponding boxed region highlight the self-

crosses (arrows). Insets in (D) show the expression of AAV-Cre-mCherry (red) colocalized with that of AAV-Cre-GFP in the soma.

(F–I) Confocal analysis of Pcdhgfcon3/fcon3;Robo2flox/flox PCs infected with AAV-DsRed (F and G) or AAV-Cre-GFP (H and I). Confocal z projections of the entire

arbor are shown in (F) and (H). Skeletonized reconstructions (G and I) of the corresponding boxed region show the self-crosses (arrows).

(J) Quantification of the frequency of self-crossing (#/100 mm,mean ± SEM) in PCs from the above rescue and genetic experiments (n = 8–9 cells, threemice for all

conditions). ****p < 0.0001, *p < 0.05 and n.s., not significant from one-way ANOVA with a Bonferroni post hoc test.

Scale bars represent 20 mm (B, D, F, and H); 5 mm (C, E, G, and I).
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examine gait parameters and a dowel rod test for motor coordi-

nation and balance (Crawley, 2007).

The footprint test revealed a number of differences between

control and mutant mice during locomotion (Figure 8A). First,

control animals normally have a strong tendency to place their
1050 Neuron 81, 1040–1056, March 5, 2014 ª2014 Elsevier Inc.
hindpaw where the forepaw of the same side was previously

placed, producing a small distance of ‘‘print separation.’’ How-

ever, mutant animals showed a large increase in print separation,

revealing an irregular pattern of paw placement during normal

locomotion (Figure 8B). Second, mutant animals showed a
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Figure 8. PC-Specific Deletion of Robo2 Is Associated with Gait Alterations

(A) Representative footprint patterns from the gait analysis ofPcp2-Cre;Robo2+/+ (top) and Pcp2-Cre;Robo2flox/flox (bottom) animals (n = 7 animals per genotype).

Scale bar represents 1 cm.

(B–F) Pcp2-Cre;Robo2flox/flox animals exhibit a number of gait alterations relative to control Pcp2-Cre;Robo2+/+ littermates, including increased print separation

distance (B), increased maximum hind stride difference (C), a narrower front base width (D), and decreased frontpaw (E) and hindpaw (F) stride lengths.

(G–H) Results of the dowel rod test for motor coordination and balance in Pcp2-Cre;Robo2+/+ and Pcp2-Cre;Robo2flox/flox animals, which showed no differences

in the mean number of foot slips while crossing (G) or the latency to cross the beam (H).

Values are expressed by mean ± SEM. *p < 0.05, ****p < 0.0001, Student’s t test. See also Figure S5.
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greater maximum hind stride difference, a measure of stride vari-

ability in consecutive steps (Figure 8C). Third, mutant animals

exhibited small yet significant changes in several other gait

parameters relative to controls, including a smaller front base

width (Figure 8D) as well as reduced stride lengths for both front

and hind limbs (Figures 8E and 8F). In contrast, the dowel rod

test failed to detect any significant differences between control

and mutant animals, as both groups crossed the beam with

minimal foot slips (Figure 8G) and comparable latencies (Fig-

ure 8H). Together, these results suggest that disrupted PC

self-avoidance is associated with alterations in a subset of motor

behaviors.

To determine whether disrupted self-avoidance altered

aspects of synaptic development that could contribute to the

observed behavioral changes, we analyzed the cerebellum

collected from the same animals used in the motor assays.

First, they were costained with antibodies for the PC marker

Calbindin-D28k and the presynaptic marker VGLUT1 or VGLUT2

that are associated with parallel fibers (PFs) (Figures S5F and

S5G) or climbing fibers (CFs) (Figures S5I and S5J), respectively.

Both markers showed similar numbers and distributions in con-

trol and mutant animals (Figures S5B–S5D), suggesting that

these synapses developed normally. This conclusion is sup-

ported by the similar dendritic spine numbers or distribution in

AAV-labeled control and mutant PCs (Figures S5L and S5M).

Last, mutant animals showed no changes in either the number

of PCs (Figures S5E and S5H) or the target of their axonal projec-

tions in the deep cerebellar nuclei (Figures S5H–S5K).

DISCUSSION

Self-avoidance is a critical process in patterning neural circuits

during development. Here, we demonstrate a role of a classic

axon guidance system in regulating this process. We provide ge-

netic evidence to show that the secreted molecule Slit2 and its

receptor Robo2 are both required cell-autonomously for creating

the nonoverlapping pattern of PC dendrites. Furthermore, we

demonstrate that Slit2 has the ability to create a boundary to pre-

vent PC dendrite crossing and the localization of such activity to

the membrane is critical in rescuing disrupted self-avoidance.

We also show genetically that Slit/Robo and Pcdhg signaling

function as separate extracellular pathways to mediate PC

self-avoidance. Finally, we provide evidence to link the disrup-

tion of PC dendrite self-avoidance to changes in motor behavior.

Both Slit2 and Robo2 Are Required Cell-Autonomously
for PC Dendrite Self-Avoidance
The patterning of dendritic arbors by self-avoidance is thought to

be mediated by cell-autonomous mechanisms (Grueber and

Sagasti, 2010). The strong expression of both Slit2 and Robo2

in PCs makes them good candidates for this function, especially

as this ligand/receptor pair is known to be involved in repulsive

actions of many developmental processes, such as axon guid-

ance and cell migration. Our study using AAV-delivered Cre to

delete either gene specifically in PCs provides strong genetic

evidence to support this hypothesis. Furthermore, the mosaic

approach used in isolated PCs avoids any complications of

deleting these genes from neighboring cells. Therefore, our
1052 Neuron 81, 1040–1056, March 5, 2014 ª2014 Elsevier Inc.
data provide conclusive evidence to demonstrate the cell-

autonomous requirement of both Slit2 and Robo2 for proper

patterning of PC dendrites.

Our detailed characterization of the phenotype further sup-

ports an active role of Slit/Robo signaling in self-avoidance. First,

the self-crossing defect found in Robo2 mutant PCs appears to

be independent of the arbor size, shape, and location, but in-

creases in severity along with rising dendritic density, in contrast

to normal PCs with intact self-avoidance mechanisms. Second,

the defect is related to the loss of an interbranch spacing mech-

anism, which is not only reflected by 2D crossing in the x-y plane

but also manifested by the shortened distance in the z axis. Also,

the phenotype is seen during arbor elaboration between P14 and

P60, consistent with the effect on distal spiny dendrites but not

the primary dendrites. Finally, loss of Slit/Robo signaling appears

to only affect dendritic spacing, a key outcome of self-avoid-

ance, as further characterization has not revealed other arbor

defects. Thus, our analysis of the phenotypes provides strong

support of the function of this extracellular pathway in self-

avoidance.

A feature related to self-avoidance is interneuronal tiling,

which includes both homotypic and heterotypic interactions

(Grueber and Sagasti, 2010). While the PC-specific expression

of Slit2 and Robo2 may function in preventing PC dendrites

from inappropriately avoiding neighboring non-PCs, it is not

currently known from the literature if dendrites from neighboring

PCs tile with each other. Our preliminary observations suggest

that wild-type PCs do not tile along the entire border of their

arbors, but instead exhibit rare instances of small arbor portions

that intercalate and tile with each other.We observe this arrange-

ment between pairs of both wild-type and Robo2 mutant PCs

(data not shown), suggesting that Slit/Robo signaling may not

participate in this particular arrangement of tiling, though it will

be of great interest to identify the factors mediating this interneu-

ronal interaction. Furthermore, Slit/Robo signaling is not involved

in monoplanar development, which was recently shown to be

influenced by neuronal connectivity (Kaneko et al., 2011).

Local Repulsive Action of Slit2 in Dendrite Self-
Avoidance
Given that Slit/Robo signaling lacks the molecular diversity

to specify the identity of each neuron, the self-avoidance

phenotype associated with its loss in PCs suggests that it

may mediate a general branch repulsion mechanism instead

of self-recognition. This proposed repulsive role is supported

by the cerebellar folium coculture assay we developed. Using

this assay, we found an inhibitory effect of Slits on PC den-

drites that is different from that of the traditionally defined

repulsive activity in culture. Unlike secreted semaphorins that

can steer neurites away from a distance (Messersmith et al.,

1995), Slits exert their inhibitory action only for PC dendrites

in the vicinity of the protein source. This local activity is con-

sistent with the boundary-establishing function of Slit/Robo

signaling in other developmental processes (Domyan et al.,

2013; Ma and Tessier-Lavigne, 2007; Plump et al., 2002;

Wang et al., 2013).

The boundary establishing activity of Slit is also consistent

with the requirement of local repulsion in self-avoidance, a
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conclusion that is supported by the rescue experiment, in which

only membrane-associated Slit2 activity is capable of correcting

the self-crossing defects in Slit2 mutant PCs. Although the

rescue experiment only demonstrates where the repulsive activ-

ity is needed, the notion that the native proteins act in a localized

fashion is consistent with the physical properties of Slit proteins,

which are known to be cleaved and associate with cell mem-

branes (Nguyen-Ba-Charvet et al., 2001; Wang et al., 1999).

Additionally, recent studies have shown that Slit can interact

with and be localized by extracellular matrix (ECM) components,

such as dystroglycan (Wright et al., 2012) and collagen (Xiao

et al., 2011). Thus, it is possible that secreted Slit proteins are

anchored either on the dendritic membrane or nearby in the

ECM to create a repulsive boundary for neighboring branches.

This hypothesis is also consistent with the recent discovery of

the interaction between dendrites and neighboring tissues via

an extracellular molecular adhesion complex (Dong et al.,

2013; Salzberg et al., 2013).

The cell-autonomous function described here for Slit2 is

distinct from Netrin, another secreted cue that was implicated

in dendrite self-avoidance in C. elegans (Smith et al., 2012).

There, Netrin does not act cell-autonomously, but instead dif-

fuses into the extracellular space where it is captured by its

Unc40 receptor on the dendrite and then presented to the

Unc5 receptor of the neighboring dendrite, both of which contact

each other in a head-on fashion. This unique action for a secreted

molecule may reflect a fundamental difference in the mecha-

nisms of self-avoidance between dendritic arbors of different

geometries. Taken together, our study points to the different

means by which secreted molecules pattern dendritic arbors.

Two Independent Pathways Mediate PC dendrite Self-
Avoidance at the Cell Surface
Combined with the recent discovery of Pcdhg-mediated self-

recognition in PCs (Lefebvre et al., 2012), our study demon-

strates the presence of a second molecular pathway that is

required for self-avoidance in the same cell type. We investi-

gated any putative in vivo interactions between these two

signaling systems and considered two general models by which

Pcdhgs and Slit/Robo might function in self-avoidance. The first

model positions Pcdhgs and Slit/Robo in a linear pathway, start-

ing with Pcdhg-mediated recognition that is followed by Slit/

Robo-mediated sister branch repulsion. The second model

posits that the two pathways act in parallel at the cell surface,

with Pcdhgs mediating recognition-dependent self-avoidance

and Slit/Robo mediating a more general, likely recognition-inde-

pendent repulsive function.

The failure of Slit2D2GPI to rescue the self-avoidance defect in

Pcdhg mutant PCs and the aggravated phenotype in

Pcdhg/Robo2 double mutant PCs argues against the first model

of a shared pathway. If Pcdhg-mediated recognition results in

Slit/Robo-mediated branch repulsion in vivo, then direct activa-

tion of the Slit/Robo pathway via overexpression of the

membrane-bound Slit2 fragment (Slit2D2GPI) should bypass

the requirement of Pcdhg signaling. Instead, Slit2D2GPI overex-

pression failed to rescue the defect, indicating that Slit/Robo

does not act downstream of Pcdhgs. Additionally, if Pcdhgs

and Slit/Robo act in the same linear pathway, then double
Pcdhg/Robo2 mutant PCs would be expected to have a pheno-

type similar to either single mutant. In contrast, Pcdhg/Robo2

double mutants exhibit an aggravated phenotype. Taken

together, these two results support the idea that Pcdhgs and

Slit/Robo act in parallel to promote PC dendrite self-avoidance.

Lastly, we observe no appreciable qualitative differences

between the Slit/Robo and Pcdhg mutant phenotypes, sug-

gesting that Slit/Robo specifically mediates self-avoidance, as

opposed to different functions with a similar outcome.

The presence of multiple self-avoidance mechanisms in a

single cell is not without precedent, as the class IV da neurons

in Drosophila use mechanisms in addition to Dscam-mediated

recognition (Long et al., 2009; Matsubara et al., 2011). This

may be an effective strategy for ensuring that each dendrite

occupies a discrete spatial domain, which can be achieved by

converging onto common intracellular components. Because

little is known about the intracellular mechanisms for self-avoid-

ance, it will be of great interest to test the role of those compo-

nents identified for Slit/Robo repulsion in PC self-avoidance

(Bashaw and Klein, 2010; O’Donnell et al., 2009) and determine

their requirement for both pathways.

Motor Behavior of Self-Avoidance Mutants
Despite the recent success in identifying the molecular mecha-

nisms of self-avoidance in a number of cell types, little is known

about the consequences of disrupting this widely seen

patterning feature for circuit function or animal behavior. The

extensively branched PC dendritic arbor is critical for integrating

a large number of diverse synaptic inputs (Häusser et al., 2000)

and hence normal motor behavior (Becker et al., 2009; Donald

et al., 2008; Li et al., 2010; Sergaki et al., 2010). Taking advan-

tage of this function, we used behavioral assays to demonstrate

the effect of disrupted self-avoidance on motor circuit function.

In particular, we show that population-wide deletion of Robo2

in PCs is associated with gait alterations, specifically an irregular

pattern of paw placement, without affecting general synaptic

development.

Howmight a disruption of self-avoidance produce a change in

motor behavior? Interestingly, the self-avoidance defect only

affects the spiny distal branches that synapse with PFs, but

not the CF-innervated smooth primary dendrites, suggesting

that a change in PF-PC connectivity could underlie the observed

motor deficits, as previously shown by mutating the glutamate

receptor (Kashiwabuchi et al., 1995). While our analysis of both

pre- and postsynaptic elements suggests overall normal devel-

opment, we cannot exclude the possibility of nonmorphological

changes in PF-PC connectivity, perhaps by altering synapse

distribution across branches or their transmission properties.

Further investigation by electron microscopy and electrophysi-

ology will be necessary to determine the consequences of

self-avoidance defects on synaptic functions. Additionally, the

self-avoidance defect may alter interactions between PCs and

interneurons in the ML. Regardless, cerebellar PCs provide an

accessible system to further address these questions and

understand the role of dendrite organization in neural circuit

function that is critical to behavior.

In summary, our discovery of a second pathway mediating

PC self-avoidance highlights the importance and complexity of
Neuron 81, 1040–1056, March 5, 2014 ª2014 Elsevier Inc. 1053
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local molecular interactions during dendritic development (Jan

and Jan, 2010). Furthermore, our elucidation of a role for a ca-

nonical repulsive guidance cue in self-avoidance has general

implications for understanding molecular regulation of dendritic

patterning during neural circuit assembly (Zipursky and Sanes,

2010). Finally, our observation of behavioral changes associated

with self-avoidance defects suggests potential contributions of

dendritic patterning to circuit functions, a connection that

warrants further investigation in the future.

EXPERIMENTAL PROCEDURES

Mouse Strains

TheRobo2flox andPcdhgfcon3 conditional alleles and the PC-specificPcp2-Cre

driver were described previously (Barski et al., 2000; Lefebvre et al., 2008; Lu

et al., 2007). The Slit2flox conditional allele containing loxP sequences flanking

exon 8 was established at the MCI/ICS (Mouse Clinical Institute, Institut

Clinique de la Souris, Illkirch, France; http://www.ics-mci.fr/). Cre-dependent

deletion interrupts Slit2 proteins after Thr203 located in the first LRR. All

mice were maintained in a mixed C57BL6/CD-1 background and used in

accordance with protocols approved by the Institutional Animal Care and

Use Committees at the University of Southern California following National

Health Institutes (NIH) regulations.

Expression Analysis by In Situ Hybridization,

Immunohistochemistry, and Western Blot

In situ analysis (Zhao andMa, 2009) was done in P14 cerebellar sections using

digoxigenin (DIG)-labeled RNA probes for Slits and Robos (Brose et al., 1999).

Robo2 staining was done in P21 cerebellar sections (16 mm). Western blots

were done with protein extracts of whole cerebellar, dissected GCL, or

ML+PCL tissues from P14 animals.

Analysis of PC Dendrites after AAV Injection

rAAVs produced by Vector BioLabs were injected into P0 newborn mouse

pups as previously described (Gibson and Ma, 2011). P14-P60 cerebella

were sectioned (100 or 16 mm) and immunostained. Labeled PC dendrites

were stained with anti-GFP (Aves Labs) or anti-DsRed (Clontech) anti-

bodies followed by Cy2- or Cy3-conjugated secondary antibodies (Jackson

ImmunoResearch). Optical sections were collected on a confocal microscope

(LSM5; Zeiss) and analyzed using Neurolucida (MBF Bioscience). Any two

branches crossing over each other were marked and counted manually in

z projections. Neurolucida Explorer was used to calculate total dendrite

area, number of dendritic branches, and dendrite length. The z distance

between crossing branches was calculated from 3D reconstructions.

The samplingmethodwas based on grids of 103 10 mmsquares overlaid on

top of the z projection of PC confocal stacks (Figure S2A). A minimum of 20%

of all grid squares covering the entire tree were randomly selected for 3D

reconstruction (Figure S2B) and further analysis of self-crossing frequencies,

separation between crossing branches along the z axis, and the relationship

between dendrite density and the number of self-crosses. It was validated

against full reconstructions to detect differences between different genotypes

(Figures S2C and S2D).

PC Explant Cocultures

Foliar explants isolated from P7 coronal cerebellar sections were placed on

cell-culture inserts (0.4 mm; Millipore) floating on top of culture media. Fifty

percent media was replenished every 3 days. COS cell aggregates prepared

via the hanging drop method (Kennedy et al., 1994) were placed adjacent to

the explants after 10 DIV, and the explants were analyzed by immunostaining

after an additional 3 DIV.

Behavioral Assays

All behavioral assays were performed at P21. Gait analysis was performed

using a footprint test and motor coordination/balance was assayed using a
1054 Neuron 81, 1040–1056, March 5, 2014 ª2014 Elsevier Inc.
dowel rod test. The experimenter performing the assays was blind to the

genotype throughout data acquisition.

Statistics

Comparisons of two samples were done by Student’s t test, with Welch’s

correction for unequal variances when appropriate. Multiple comparisons

were made by one-way ANOVA with a Bonferroni post hoc test.
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and Schmucker, D. (2007). Homophilic Dscam interactions control complex

dendrite morphogenesis. Neuron 54, 417–427.

Hussain, S.A., Piper, M., Fukuhara, N., Strochlic, L., Cho, G., Howitt, J.A.,

Ahmed, Y., Powell, A.K., Turnbull, J.E., Holt, C.E., and Hohenester, E.

(2006). A molecular mechanism for the heparan sulfate dependence of Slit-

Robo signaling. J. Biol. Chem. 281, 39693–39698.

Jan, Y.N., and Jan, L.Y. (2010). Branching out: mechanisms of dendritic arbor-

ization. Nat. Rev. Neurosci. 11, 316–328.

Kaneko, M., Yamaguchi, K., Eiraku, M., Sato, M., Takata, N., Kiyohara, Y.,

Mishina, M., Hirase, H., Hashikawa, T., and Kengaku, M. (2011). Remodeling

of monoplanar Purkinje cell dendrites during cerebellar circuit formation.

PLoS ONE 6, e20108.

Kashiwabuchi, N., Ikeda, K., Araki, K., Hirano, T., Shibuki, K., Takayama, C.,

Inoue, Y., Kutsuwada, T., Yagi, T., Kang, Y., et al. (1995). Impairment of motor

coordination, Purkinje cell synapse formation, and cerebellar long-term

depression in GluR delta 2 mutant mice. Cell 81, 245–252.

Kennedy, T.E., Serafini, T., de la Torre, J.R., and Tessier-Lavigne, M. (1994).

Netrins are diffusible chemotropic factors for commissural axons in the embry-

onic spinal cord. Cell 78, 425–435.

Kim, M.E., Shrestha, B.R., Blazeski, R., Mason, C.A., and Grueber, W.B.

(2012). Integrins establish dendrite-substrate relationships that promote den-

dritic self-avoidance and patterning in Drosophila sensory neurons. Neuron 73,

79–91.

Kramer, A.P., and Kuwada, J.Y. (1983). Formation of the receptive fields of

leech mechanosensory neurons during embryonic development. J. Neurosci.

3, 2474–2486.

Lefebvre, J.L., Zhang, Y., Meister, M., Wang, X., and Sanes, J.R. (2008).

gamma-Protocadherins regulate neuronal survival but are dispensable for

circuit formation in retina. Development 135, 4141–4151.

Lefebvre, J.L., Kostadinov, D., Chen, W.V., Maniatis, T., and Sanes, J.R.

(2012). Protocadherins mediate dendritic self-avoidance in the mammalian

nervous system. Nature 488, 517–521.
Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe,

A.F., Boguski, M.S., Brockway, K.S., Byrnes, E.J., et al. (2007). Genome-wide

atlas of gene expression in the adult mouse brain. Nature 445, 168–176.

Li, J., Gu, X., Ma, Y., Calicchio, M.L., Kong, D., Teng, Y.D., Yu, L., Crain, A.M.,

Vartanian, T.K., Pasqualini, R., et al. (2010). Nna1 mediates Purkinje cell den-

dritic development via lysyl oxidase propeptide and NF-kB signaling. Neuron

68, 45–60.

Liu, Y., and Halloran, M.C. (2005). Central and peripheral axon branches from

one neuron are guided differentially by Semaphorin3D and transient axonal

glycoprotein-1. J. Neurosci. 25, 10556–10563.

Long, H., Sabatier, C., Ma, L., Plump, A., Yuan, W., Ornitz, D.M., Tamada, A.,

Murakami, F., Goodman, C.S., and Tessier-Lavigne, M. (2004). Conserved

roles for Slit and Robo proteins in midline commissural axon guidance.

Neuron 42, 213–223.

Long, H., Ou, Y., Rao, Y., and van Meyel, D.J. (2009). Dendrite branching

and self-avoidance are controlled by Turtle, a conserved IgSF protein in

Drosophila. Development 136, 3475–3484.

Lu, W., van Eerde, A.M., Fan, X., Quintero-Rivera, F., Kulkarni, S., Ferguson,

H., Kim, H.G., Fan, Y., Xi, Q., Li, Q.G., et al. (2007). Disruption of ROBO2 is

associated with urinary tract anomalies and confers risk of vesicoureteral

reflux. Am. J. Hum. Genet. 80, 616–632.

Ma, L., and Tessier-Lavigne, M. (2007). Dual branch-promoting and branch-

repelling actions of Slit/Robo signaling on peripheral and central branches of

developing sensory axons. J. Neurosci. 27, 6843–6851.

Marillat, V., Cases, O., Nguyen-Ba-Charvet, K.T., Tessier-Lavigne, M., Sotelo,
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